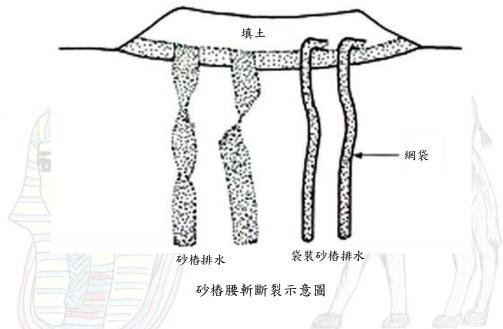

壓密排水法


壓密排水法又稱垂垂直排水法如下圖,可分成砂樁排水法、袋裝砂樁排水法、塑膠板排水法等3大類。

摘自:http://www.taiyo-kiso.co.jp/old/nwd012.gif

各種排水法特徵如下表

砂樁排水法	201袋裝砂樁排水法派 塑膠板排水法	
將直徑 40~50cm 的砂樁設置	強韌袋中充填砂的排水體,	高分子材料特殊加工製成
於黏性土地盤中,促成壓密	陸上採用直徑 12~25cm,海	紙板般的板,寬10cm厚
排水改良軟弱黏性土地盤	上 25~40cm	1.6~3.0mm,大致可換算
A . 0		成5公分徑的砂樁
1. 業績良好	1. 業績近年來逐漸增多	1. 業績多
2. 部份換砂可增加強度	2. 不會像砂樁腰斬斷裂,確	2. 重量輕容易搬運
3. 直徑大可使用排水係數大	保排水樁連續	3. 排水材品質一樣
的砂,排水能力大	3. 施工管理容易,袋子露出	4. 可小間距施工縮短壓密
4. 陸上、海上均可	地上容易確認	時間
5. 施工管理比較難(砂樁腰斬	4. 陸上、海上均可	5. 施工速度快
斷裂)	5. 小口徑者砂使用量少	6. 海上業績較少
6. 超軟弱地盤砂椿自立困難	6.1 次可打設根數較多,施	7. 改良層中有硬砂層時無
7. 施工機具重需地耐力	工速度快	法打設
载满貨品的廳	7. 超軟弱地盤砂樁亦可自立	丁神燈

1. 垂直排水法基本原理

垂直排水是加載不會破壞地盤程度的載重,承受載重壓力,促進軟弱層壓密,增強地盤強度。依 Terzaghi 的 1 維壓密理論,黏性土壓密必要時間與排水距離自乘成正比,欲縮短壓密時間以可利用縮短排水路。

壓密時間與排水距離的關係可以下式表示

$$t = \frac{D^2 T_{\nu}}{C_{\nu}}$$

t: 壓密必要時間(day)

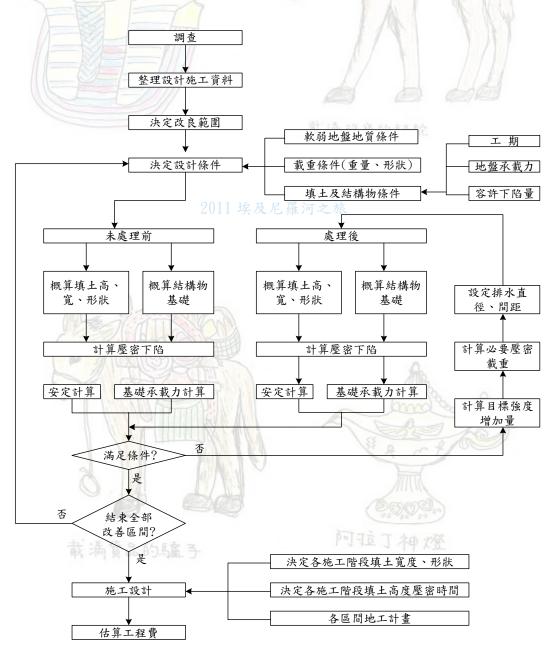
D:排水距離(m)

C_{\(\gamma\)}: 壓密係數(cm²/day)

T: 依壓密度(U)求得時間係數

即縮短排水距離 D 就可加速壓密時間,利用此原理改良強化軟弱地盤的工法稱為垂直排水法。本工法可在軟弱地盤中置入砂椿、袋裝砂椿或塑膠板,使之成為排水通路,在上方加載將地盤中發生的過剩空隙水排除,促成壓密下陷,短時間內增強軟弱地盤的承載力,防止下陷為其目的。

2. 垂直排水法設計流程


垂直排水法設計與其他工法同樣,必須與結構物本身設計同為一體,不可 分離單獨設計,設計時應假定下列事項進行設計。

- ① 目標強度增加量
- ② 容許下陷量(容許結構物未來下陷量)
- ③ 施工範圍

上述因素必須充分考量結構物安定、作用於結構物土壓、地盤承載力、容許結構物下陷量等作決定。

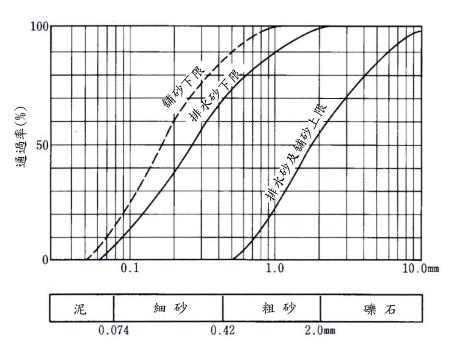
與本工法設計有關地質條件為,原地盤的非排水強度、強度增加率、單位 體積重量、壓密係數、體積壓縮係數、過壓密載重、壓密層厚度、填土剪應力 強度及單位體積重量等,詳細請參考土壤。

垂直排水法設計流程如下

砂椿排水法設計流程

(1) 土壤試驗

設計垂直排水法時,必要土壤試驗如下


目的	試 驗	項目
確認黏土層及透水性厚度	標準貫入試驗	7 61 53/A
了解地盤性質	物理試驗	天然含水比,空隙比、液性臨界、 塑性臨界、土粒子比重、飽和度、 單位體積重量、粒度分佈
推估壓密下陷量及壓密必 要時間	壓密試驗	壓縮指數、體積壓縮指數、壓密降 伏應力、壓密係數、透水係數
地盤改良範圍 檢討對載重重量的安定性	剪力試驗 3軸試驗	單軸壓縮強度、黏著力 壓密非排水
排水材或墊材的透水性	透水試驗	

(2) 排水材及舖砂的透水性

① 砂排水

2011 埃及尼羅河之旅

排水砂及舖砂的透水性可利用透水試驗取得,但是通常依粒徑分佈就可斷判,下圖表示適宜粒度。

砂排水用砂及舖砂適宜粒度

② 塑膠材排水

最先被開發的是排水紙(paper drain),一種具有孔的紙板製成的卡板 (card board),用來取代排水砂,由於耐久性不佳,鮮被採用。近來有單張不 纖布,以合成樹脂為蕊的不纖布作成的袋狀濾布複合結構,或將保麗龍特殊加工製成的多孔單一結構等。

③ 袋裝砂排水

直徑 12cm 的合成纖維製成網裝內填充砂,改善砂樁腰斬或切斷等缺點,適用於超軟弱地盤。

4 舖砂

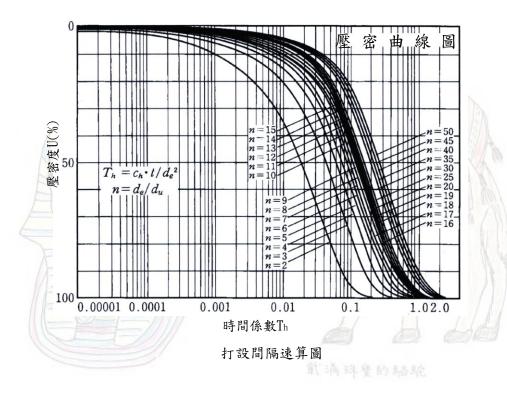
舖砂厚度海中通常為1公尺,陸上為0.5公尺。舖砂排水能力小時,會因水頭損失導致壓密時間變長,尤其是中央部份,因此必須選用排水性良好的材料。

(3) 排水樁間隔 2011 埃及尼羅河之

垂直排水間隔,依欲在工期內得到預定壓密度決定。垂直排水通常以三角 形或正方形配置打設。空隙水壓流入排水樁內的範圍為對各排水樁為等距離的 面所涵蓋,可為6角形或正方形,為解析方便通常以等面積的圓換算,稱為等 值有效圓,其直徑 De稱為等值有效直徑,與打設間隔 D 有下列關係。

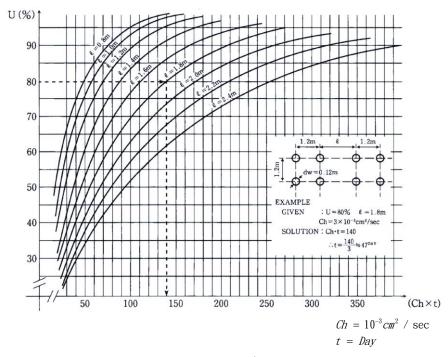
對特定打設間隔,平均壓密度 U可由下圖求得。

$$n = \frac{d_e}{d_u} \qquad T_h = \frac{c_h t}{d_e^2}$$

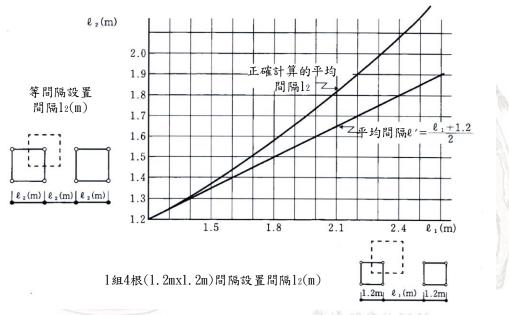

du: 排水樁直徑(m)

de: 等值有效圓直徑(m)

Ch: 水平方向壓密係數(cm²/min)


Th: 水平壓密時間係數

T: 壓密開始後的時間(day)


(4) 袋裝砂排水樁間隔

袋裝砂排水樁間隔同如上述砂排水樁設計,通常打設裝置為1.2公尺正方形,可同時打設4根。砂排水樁是以等間隔施工,袋裝砂排水樁間隔為不等間隔,因此考量每根樁所負擔集中面積而計算平均壓密度。實際設計時,可依下表推算。

打設間隔速算圖

但是間隔超過2公尺以上時,因與嚴密計算所得平均間隔有些誤差,必須利用 下圖作修正。

等間隔配置換算表

(5) 塑膠板排水樁間隔

2011 埃及尼羅河之旅

塑膠板排水樁間隔,基本上如同砂排水樁設計,因其形狀為矩形,依下式 將其換算成圓形斷面。

$$d_{w} = \frac{2(a+b)}{\pi}$$

a: 排水材寬(約10~19cm)

b: 排水材厚(約 4mm)

dw:使用排水材的假想直徑

(6) 改良後下陷量

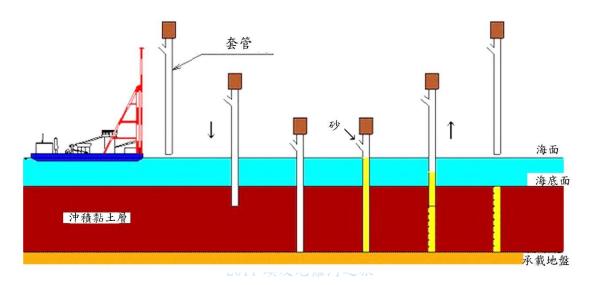
改良後的下陷量可利用上述各種排水材間隔求得的平均壓密度 U,依基礎 地盤下陷所述下式估算

$$S_{i} = U_i(T_{vi})S_i$$

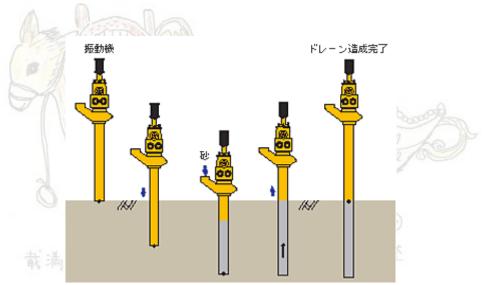
(7) 改良後地盤強度

改良後地盤強度可利用上述各種排水材間隔求得的平均壓密度U,依土壤

所述下列壓密引起粘性土強度增加公式計算。


$$\Delta c_u = \Delta p(c_u / p)U$$

3. 砂椿排水法


砂椿打設順序

①設定 → ②打入→ ③打設完成 → ④投入砂 → ⑤拔出 → ⑥完工

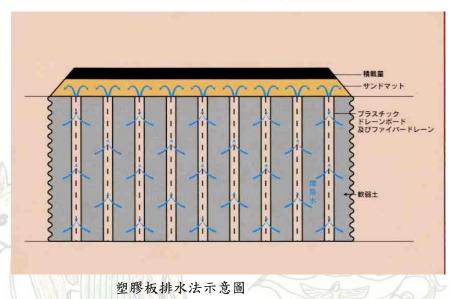
摘譯自:

http://www.yorigami.co.jp/communication/structures/structurel_1.html 砂樁排水法海上施工示意圖

砂樁排水法陸上施工示意圖

摘自:

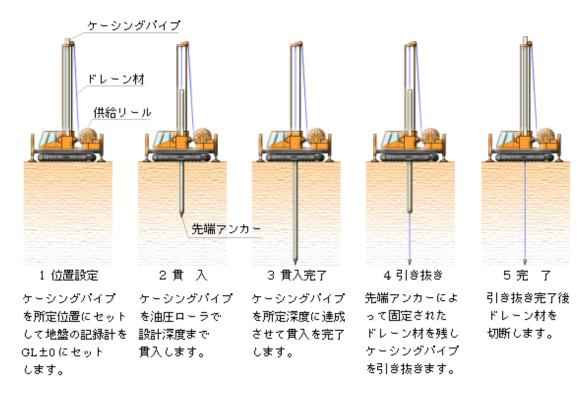
http://www.fudotetra.co.jp/geo/kouhou/atsumitsu_sokushin/sanddrain/index.html


袋裝砂樁排水法

摘自:

http://www.fudotetra.co.jp/geo/kouhou/atsumitsu_sokushin/cfdrain/inde

x.html


貮 满珠蜜的骆驼

摘自:http://www.cad-tech.co.jp/contents/pvd/html/pvd-kouhou.htm

载满货品的驢子

阿拉丁神燈

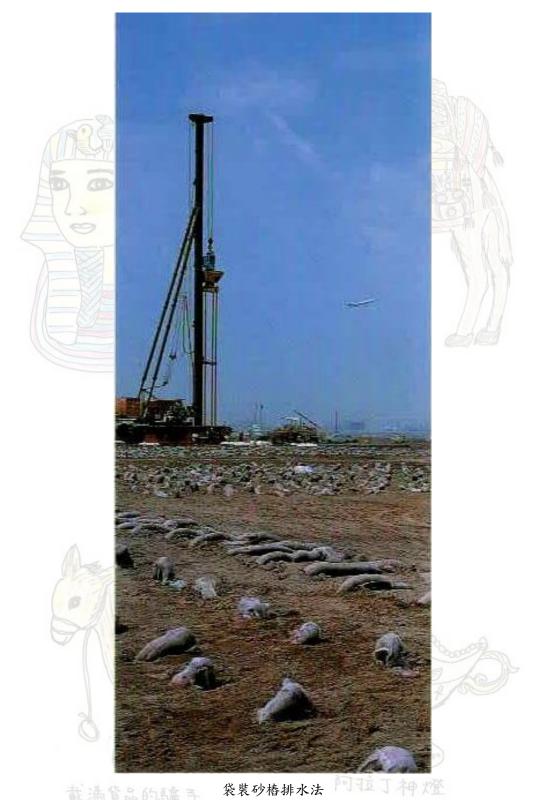
塑膠板排水法示意圖

摘自:http://www.aomi.co.jp/tech/ground/pbd.html

2011 埃及尼羅河之旅

各種垂直排水法的海上作業船如下圖

(a)砂椿排水船



2011(b) 砂壓密船之旅

(c) 深層混合處理船

摘自: http://www.umeshunkyo.or.jp/108/prom/235/page.html

袋裝砂樁排水法 摘自:http://www.taiyo-kiso.co.jp/business/improvement/method_1_1.html